Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(1): e23175, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38163201

RESUMO

Gynmena inodorum (GI) is a green leafy vegetable used in the Northern Thai cuisine which has antioxidant activities and may be applicable for preventing oxidative stress and aging-related disease. However, understanding the relationship between GI phytonutrients and their antioxidant properties has been unclear. The aims of this study were to identify the GI leaf phytochemicals and to study their antioxidant activities. A chromatogram of LC-ESI-MS/QTOF-MS showed that the GI leaves were potentially composed of phenolics, quinic acids, flavonoids, and triterpenoid saponins. This study was able to authenticate quercetin, kaempferol, and triterpenoid GIA1 in the samples. The GI materials with high contents of phenolics, flavonoids, quercetin, and kaempferol showed significant relation to antioxidation and protection in endothelial cell death suppressed by reactive nitrogen species. Meanwhile, triterpenoids had a low antioxidant impact. Ultimately, GI leaves with high phenolic compounds are a promising raw material to develop as an antioxidant functional food.

2.
Foods ; 12(11)2023 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-37297501

RESUMO

Gymnema inodorum (GI) is a leafy green vegetable found in the northern region of Thailand. A GI leaf extract has been developed as a dietary supplement for metabolic diabetic control. However, the active compounds in the GI leaf extract are relatively nonpolar. This study aimed to develop phytosome formulations of the GI extract to improve the efficiencies of their phytonutrients in terms of anti-inflammatory and anti-insulin-resistant activities in macrophages and adipocytes, respectively. Our results showed that the phytosomes assisted the GI extract's dispersion in an aqueous solution. The GI phytocompounds were assembled into a phospholipid bilayer membrane as spherical nanoparticles about 160-180 nm in diameter. The structure of the phytosomes allowed phenolic acids, flavonoids and triterpene derivatives to be embedded in the phospholipid membrane. The existence of GI phytochemicals in phytosomes significantly changed the particle's surface charge from neutral to negative within the range of -35 mV to -45 mV. The phytosome delivery system significantly exhibited the anti-inflammatory activity of the GI extract, indicated by the lower production of nitric oxide from inflamed macrophages compared to the non-encapsulated extract. However, the phospholipid component of phytosomes slightly interfered with the anti-insulin-resistant effects of the GI extract by decreasing the glucose uptake activity and increasing the lipid degradation of adipocytes. Altogether, the nano-phytosome is a potent carrier for transporting GI phytochemicals to prevent an early stage of T2DM.

3.
Nutrients ; 15(4)2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36839375

RESUMO

Anoectochilus burmannicus is an orchid that contains phenolic compounds and exhibits antioxidant and anti-inflammation properties. This study aimed to investigate whether its ethanolic extract (ABE) can be used as a reducing agent and/or a stabilizer of nano-selenium (SeNP) synthesis. SeNPs exhibited higher antioxidant activity than ABE-SeNPs. In contrast, ABE-SeNP (4 µM Se) had greater anti-inflammatory activity in LPS-induced macrophages than SeNPs. Interestingly, ABE acted as a stabilizer for SeNPs by preventing particle aggregation and preserving its antioxidant activity after long-term storage (90 days). Moreover, after the freeze-drying process, ABE-SeNPs could be completely reconstituted to suspension with significantly stable antioxidant and anti-inflammatory activities compared to freshly prepared particles, suggesting the cryoprotectant and/or lyoprotectant role of ABE. The present study shows the potential of ABE as an effective stabilizer for nanoparticles and provides evidence for the development of ABE-SeNPs as a food supplement or novel functional ingredient for health benefits.


Assuntos
Nanopartículas , Selênio , Antioxidantes/farmacologia , Selênio/farmacologia , Anti-Inflamatórios
4.
Foods ; 11(23)2022 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-36496713

RESUMO

Legumes and pulses are important food components with various phytochemicals and health benefits. However, the health-related bioactivities of some underutilized species remain uninvestigated. To breed a new bean lineage with particular health-related properties, this study investigated phenolics (specifically, isoflavones) and the in vitro inhibitory activities of the enzyme relevant to some non-communicable diseases in underutilized cultivars of Phaseolus lunatus (lima beans), compared to the commonly consumed P. vulgaris (red kidney bean) and beans in the Glycine and Vigna genera. The results indicated that soybeans in the Glycine genus contained the highest isoflavone contents, especially glycitein (1825-2633 mg/100 g bean) and daidzein (1153-6471 mg/100 g bean), leading to potentially higher enzyme inhibitory activities (25-26% inhibition against α-amylase, 54-60% inhibition against α-glucosidase, 42-46% inhibition against dipeptidyl peptidase IV, 12-19% inhibition against acetylcholinesterase and 20-23% inhibition against butyrylcholinesterase) than those from other genera. Interestingly, lima beans with low isoflavone content (up to 2 mg/100 g bean) still possessed high inhibitory activities against lipase (12-21% inhibition) and ß-secretase (50-58% inhibition), suggesting that bioactive compounds other than the isoflavones might be responsible for these activities. Isoflavone contents and enzyme inhibitory activities in Vigna beans were diverse, depending on the particular cultivars. The information gained from this study can be used for further investigation of bioactive components and in-depth health properties, as well as for future breeding of a new lineage of bean with specific health potentials.

5.
Plants (Basel) ; 11(3)2022 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-35161275

RESUMO

Thailand has vast areas of tropical forests with many indigenous plants, but limited information is available on their phytochemical profile and in vitro inhibitions of enzymatic and nonenzymatic reactions. This study investigated phenolic profiles using liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS), antioxidant activities, and in vitro inhibitory activities of 10 indigenous plants on key enzymes related to obesity (lipase), diabetes (α-amylase and α-glucosidase), and Alzheimer's disease (cholinesterases and ß-secretase). The nonenzymatic anti-glycation reaction was also investigated. The 10 indigenous plants were Albizia lebbeck (L.) Benth, Alpinia malaccensis (Burm.) Roscoe, Careya arborea Roxb., Diplazium esculentum (Retz.) Swartz, Kaempferia roscoeana Wall., Millettia brandisiana Kurz., Momordica charantia, Phyllanthusemblica L., Zingiber cassumunar Roxb, and Zingiber citriodorum J. Mood & T. Theleide. Preparations were made by either freeze-drying or oven-drying processes. Results suggested that the drying processes had a minor impact on in vitro inhibitions of enzymatic and nonenzymatic reactions (<4-fold difference). P. emblica was the most potent antioxidant provider with high anti-glycation activity (>80% inhibition using the extract concentration of ≤6 mg/mL), while D. esculentum effectively inhibited ß-secretase activity (>80% inhibition using the extract concentration of 10 mg/mL). C. arborea exhibited the highest inhibitory activities against lipase (47-51% inhibition using the extract concentration of 1 mg/mL) and cholinesterases (>60% inhibition using the extract concentration of 2 mg/mL), while Mi. brandisiana dominantly provided α-amylase and α-glucosidase inhibitors (>80% inhibition using the extract concentration of ≤2 mg/mL). Information obtained from this research may support usage of the oven-drying method due to its lower cost and easier preparation step for these studied plant species and plant parts. Furthermore, the information on in vitro inhibitions of enzymatic and nonenzymatic reactions could be used as fundamental knowledge for further investigations into other biological activities such as cell culture or in vivo experiments of these health-beneficial plants.

6.
Sci Rep ; 11(1): 16899, 2021 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-34413383

RESUMO

Since 2006, Ficus dubia has been reported as a new Ficus species in Thailand. As per our recent report, the red-brown aqueous extract of F. dubia sap (FDS) has been determined to strongly exhibit in vitro anti-radicals. However, the phytochemicals in the FDS extract related to health-promoting antioxidation have not been explored. Thus, in this study, we aimed to investigate the chemical components of the F. dubia sap extract by liquid chromatography-electrospray ionization quadrupole time-of-flight mass spectrometry (LC-ESI-MS/QTOF-MS) and its potential use in cosmetics in terms of cellular antioxidation on keratinocytes (HaCaT), phototoxicity, and irritation on 3D skin cell models following standard tests suggested by the Organization for Economic Cooperation and Development (OECD). It was found that the sap extract was composed of quinic acid and caffeoyl derivatives (e.g., syringoylquinic acid, 3-O-caffeoylquinic acid, 4-O-caffeoylquinic acid, and dimeric forms of caffeoylquinic acids). The extract has significantly exhibited antioxidant activity against H2O2-induced oxidative stress in HaCaT cells. The cellular antioxidative effect of the FDS extract was remarkably dependent on the presence of 3- and 4-O-caffeoylquinic acid in the extract. Furthermore, the FDS extract showed negative results on skin phototoxicity and irritation. Overall, the results reveal that the FDS extract could be developed as a new antioxidant candidate for a skin healthcare product.


Assuntos
Antioxidantes/análise , Ficus/química , Extratos Vegetais/química , Pele/química , Espectrometria de Massas em Tandem , Água/química , Células 3T3 , Animais , Sobrevivência Celular , Células HaCaT , Humanos , Luz , Camundongos , Fenóis/análise , Compostos Fitoquímicos/análise , Compostos Fitoquímicos/química , Testes de Irritação da Pele
7.
Foods ; 10(8)2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-34441689

RESUMO

Chrysin (5,7-dihydroxyflavone) is a remarkable flavonoid exhibiting many health-promoting activities, such as antioxidant, anti-inflammatory, and anti-Alzheimer's disease (AD). Nevertheless, chrysin has been addressed regarding its limited applications, due to low bioaccessibility. Therefore, to improve chrysin bioaccessibility, a colloidal delivery system involving nanoemulsion was developed as chrysin nanoemulsion (chrysin-NE) using an oil-in-water system. Our results show that chrysin can be loaded by approximately 174.21 µg/g nanoemulsion (100.29 ± 0.53% w/w) when medium chain triglyceride (MCT) oil was used as an oil phase. The nanocolloidal size, polydispersity index, and surface charge of chrysin-NE were approximately 161 nm, 0.21, and -32 mV, respectively. These properties were stable for at least five weeks at room temperature. Furthermore, in vitro chrysin bioactivities regarding antioxidant and anti-AD were maintained as pure chrysin, suggesting that multistep formulation could not affect chrysin properties. Interestingly, the developed chrysin-NE was more tolerant of gastrointestinal digestion and significantly absorbed by the human intestinal cells (Caco-2) than pure chrysin. These findings demonstrate that the encapsulation of chrysin using oil-in-water nanoemulsion could enhance the bioaccessibility of chrysin, which might be subsequently applied to food and nutraceutical industries.

8.
J Ethnopharmacol ; 280: 114452, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34311061

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Anoectochilus species is a small terrestrial orchid found in tropical and subtropical rain forest. These orchids are traditionally used extensively in China, Taiwan, and Vietnam due to their medicinal properties and therapeutic benefits. They are employed for treatment in different systems, such as stomach disorders, chest pain, arthritis, tumor, piles, boils, menstrual disorders, and inflammation. Aqueous extract of Anoectochilus burmannicus (AB) has been previously reported to exhibit anti-inflammatory activities, however there is a lack of evidence regarding its bioactive compounds and the mechanism of its actions. AIM OF THE STUDY: The objectives of this study were to identify the anti-inflammatory compound(s) in an ethanolic extract of AB and to determine its anti-inflammatory mechanisms in LPS-stimulated macrophages and also its safety. MATERIALS AND METHODS: The ethanolic extract of AB (ABE) was prepared and subsequently subjected to polarity-dependent extraction using n-hexane and ethyl acetate, which would result in isolation of the n-hexane (ABH), ethyl acetate (ABEA), and residue or aqueous (ABA) fractions. The AB fractions were investigated to determine total phenolic and flavonoid content, antioxidant capacity, toxicity, and safety in RAW 264.7 macrophages, human PBMCs, and RBCs. After extraction anti-inflammation screening of each extract was performed by nitric oxide (NO) production assay. The active fractions were further examined for their effect on proinflammatory mediators. In addition, kinsenoside content in the active fractions was identified using LC-MS/MS. Cellular toxicity and genotoxicity of AB were also tested using the wing spot test in Drosophila melanogaster. RESULTS: The data showed that ABEA had the highest phenolic content and level of antioxidant activities. ABE, ABEA, and ABA, but not ABH, significantly inhibited the LPS-stimulated NO production in the macrophages. Both ABEA and ABA reduced LPS-mediated expression of TNF-α, IL-6, iNOS, and COX-2 at both mRNA and protein levels. Besides, only ABEA notably diminished the LPS-stimulated p65 phosphorylation required for nuclear translocation and transcriptional activation of the nuclear factor-κB (NF-κB). Interestingly, liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis revealed ABA contained a high level of kinsenoside, a likely anti-inflammatory compound, while ABE and ABEA might require other compounds in combination with kinsenoside for the inhibition of inflammation. It was shown that all active fractions were neither cytotoxic nor genotoxic. CONCLUSION: Our study demonstrated that the hydrophilic fractions of AB exhibit anti-inflammatory activity in LPS-stimulated macrophages. The mechanism used by the AB involves the scavenging of free radicals and the reduction of proinflammatory mediators, including IL-1ß, IL-6, TNF-α, NO, iNOS and COX-2. The anti-inflammatory action of AB involves the suppression of the NF-κB signaling pathway by some unknown component(s) present in ABEA. This study found that kinsenoside is a major active compound in ABA which could be used as a biomarker for the quality control of the plant extraction. This study provides convincing significant information in vitro regarding the anti-inflammatory mechanism and preliminary evidence of the safety of Anoectochilus burmanicus. Therefore, the knowledge acquired from this study would provide supportive evidence for the development and standardization of the use of the extract of this plant as alternative medicine or functional food to prevent or treat non-communicable chronic diseases related to chronic inflammation.


Assuntos
Anti-Inflamatórios/farmacologia , Inflamação/tratamento farmacológico , Orchidaceae/química , Extratos Vegetais/farmacologia , Animais , Anti-Inflamatórios/isolamento & purificação , Anti-Inflamatórios/toxicidade , Bioensaio , Cromatografia Líquida , Drosophila melanogaster , Etanol/química , Humanos , Mediadores da Inflamação/metabolismo , Lipopolissacarídeos , Macrófagos/efeitos dos fármacos , Macrófagos/patologia , Camundongos , Óxido Nítrico/metabolismo , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/toxicidade , Células RAW 264.7 , Espectrometria de Massas em Tandem
9.
Food Sci Nutr ; 9(4): 2269-2279, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33841843

RESUMO

Ficus species have been used as a typical component in food and folk medicine in Asia for centuries. However, little is known regarding the bioactivity and genotoxicity of the recently identified Ficus dubia (FD), an indigenous plant of the tropical evergreen rain forest. FD is unique from other Ficus species because of its highly sought-after red-brown latex. Antioxidant properties together with phenolic and flavonoid contents of FD were elucidated. Health-promoting characteristics were examined by studying the inhibition of enzymes as a drug target for diabetes, hypertension, Alzheimer's disease, and obesity, together with anticancer ability against human colorectal adenocarcinoma, human hepatocellular carcinoma, human ovarian carcinoma, human prostate adenocarcinoma, and human lung carcinoma. Besides, FD genotoxicity was tested using the Drosophila wing spot test. Results showed that both FD root and latex exhibited antioxidant activity due to the presence of phenolics and flavonoids, specifically caffeic acid and cyanidin. The ethanolic fraction of FD root demonstrated a potent antidiabetic mechanism underlying α-glucosidase inhibitory activity similar to acarbose. This fraction also suppressed lung and ovarian cancer growth, possibly by G1 and G2/M arrest, respectively. All tested fractions lacked mutagenicity in vivo. Results indicated that FD can be developed as novel antidiabetic compounds; however, its bioactive compounds should be further identified.

10.
J Ethnopharmacol ; 266: 113398, 2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-32971162

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Chiang-Da, Gymnema inodorum (Lour.) Decne. (GI), is an ethnomedicinal plant that has been used for diabetic treatment since ancient times. One of the anti-diabetic mechanisms is possibly related to the actions of triterpene glycoside, (3ß, 16ß)-16,28-dihydroxyolean-12-en-3-yl-O-ß-D-glucopyranosyl-ß-D-glucopyranosiduronic acid (GIA1) in decreasing carbohydrate digestive enzymes and intestinal glucose absorption in the gut system. AIMS OF THE STUDY: To observe the amount of GIA1 in GI leaf extracts obtained from different ethanol concentrations and to investigate the anti-hyperglycemic mechanisms of the extracts and GIA1. MATERIALS AND METHODS: The crude extracts were prepared using 50%v/v to 95%v/v ethanol solutions and used for GIA1 isolation. The anti-hyperglycemic models included in our study examined the inhibitory activities of α-amylase/α-glucosidase and intestinal glucose absorption related to sodium glucose cotransporter type 1 (SGLT1) using Caco-2 cells. RESULTS: GIA1 was found about 8%w/w to 18%w/w in the GI extract depending on ethanol concentrations. The GI extracts and GIA1 showed less inhibitory activities on α-amylase. The extracts from 75%v/v and 95%v/v ethanol and GIA1 significantly delayed the glycemic absorption by lowering α-glucosidase activity and glucose transportation of SGLT1. However, the 50%v/v ethanolic extract markedly decreased the α-glucosidase activity than the SGLT1 function. CONCLUSION: Differences in the GIA1 contents and anti-glycemic properties of the GI leaf extract was dependent on ethanol concentrations. Furthermore, the inhibitory effects of the 75%v/v and 95%v/v ethanolic extracts on α-glucosidase and SGLT1 were relevant to GIA1 content.


Assuntos
Gymnema/química , Extratos Vegetais/farmacologia , Saponinas/farmacologia , Triterpenos/farmacologia , Células CACO-2 , Metabolismo dos Carboidratos/efeitos dos fármacos , Digestão/efeitos dos fármacos , Glucose/metabolismo , Humanos , Hipoglicemiantes/isolamento & purificação , Hipoglicemiantes/farmacologia , Absorção Intestinal/efeitos dos fármacos , Folhas de Planta , Saponinas/isolamento & purificação , Triterpenos/isolamento & purificação , alfa-Amilases/antagonistas & inibidores , alfa-Glucosidases/efeitos dos fármacos , alfa-Glucosidases/metabolismo
11.
Molecules ; 25(16)2020 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-32824050

RESUMO

Sacred lotus (Nelumbo nucifera) has long been used as a food source and ingredient for traditional herbal remedies. Plant parts contain neuroprotective agents that interact with specific targets to inhibit Alzheimer's disease (AD). Organic solvents including methanol, ethyl acetate, hexane, and n-butanol, are widely employed for extraction of sacred lotus but impact food safety. Seed embryo, flower stalk, stamen, old leaf, petal, and leaf stalk of sacred lotus were extracted using hot water (aqueous extraction). The extractions were analyzed for their bioactive constituents, antioxidant and anti-AD properties as key enzyme inhibitory activities toward acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and ß-secretase 1 (BACE-1). Results showed that the sacred lotus stamen exhibited significant amounts of phenolics, including phenolic acids and flavonoids, that contributed to high antioxidant activity via both single electron transfer (SET) and hydrogen atom transfer (HAT) mechanisms, with anti-AChE, anti-BChE, and anti-BACE-1 activities. To enhance utilization of other sacred lotus parts, a combination of stamen, old leaf and petal as the three sacred lotus plant components with the highest phenolic contents, antioxidant activities, and enzyme inhibitory properties was analyzed. Antagonist interaction was observed, possibly from flavonoids-flavonoids interaction. Further in-depth elucidation of this issue is required. Findings demonstrated that an aqueous extract of the stamen has potential for application as a functional food to mitigate the onset of Alzheimer's disease.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Antioxidantes/farmacologia , Inibidores Enzimáticos/farmacologia , Nelumbo/química , Fenóis/análise , Extratos Vegetais/farmacologia , Folhas de Planta/química , Acetilcolinesterase , Doença de Alzheimer/enzimologia , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Butirilcolinesterase/química , Proteínas Ligadas por GPI/antagonistas & inibidores , Humanos
12.
Food Sci Nutr ; 6(4): 962-969, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29983959

RESUMO

Plukenetia volubilis or Inca peanut is a promising plant with high economic value. Its seeds can be pressed for oil production or roasted and served as a snack, while the dried leaves can be used to make a kind of tea. Although the oil from the cold-pressed seeds has been proven to be safe for human consumption, little information is known about the other parts of the plant regarding safety. Thus, the aim of this study was to investigate the naturally occurring phytotoxins, including saponins, total alkaloids, and lectins in fresh and roasted Inca peanut seeds and leaves. In addition, cytotoxicity on several normal cell types including human peripheral blood mononuclear cells, human embryonic kidney cells, human hepatic stellate cells, and mouse fibroblasts as well as in vivo mutagenic properties was studied. This study showed that fresh Inca peanut seeds and leaves contain saponins, alkaloids, and lectins. However, roasting enables the reduction in alkaloids, saponins, and possibly lectins, suggesting that these phytotoxins become unstable under heat. Furthermore, Inca peanut seeds and leaves, especially after roasting, are safe to a variety of normal cell lines and do not induce DNA mutations in Drosophila expressing high biotransformation system. In conclusion, the data in this study indicated that high and chronic consumption of fresh seeds and leaves should be avoided. Heat processing should be applied before the consumption of Inca peanut seeds and leaves in order to reduce phytotoxins and potential health risks.

13.
Carbohydr Polym ; 92(1): 321-7, 2013 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-23218301

RESUMO

In this study two types of water-soluble ßCD grafted chitosan were synthesized and compared based on similar degree of N-substitution of ßCD moiety; QCD23-g-CS contained methylene spacer and QCDCA22-g-CS contained citric acid spacer. The QCD23-g-CS demonstrated greater eugenol (EG) encapsulation efficiency than that of QCDCA22-g-CS. The micelle-like assemblies of QCD23-g-CS led to slower release of EG while it did not observe in case of QCDCA22-g-CS. It was found that EG could absorb on chitosan backbone according to in silico modeling. Cytotoxicity of both derivatives against buccal mucosa cell is concentration-dependent. The QCDCA22-g-CS demonstrated stronger mucoadhesive response than that of QCD23-g-CS, due to hydrogen bonding according to mucin particle and SPR methods. Our results revealed that the spacer on both derivatives played an important role on binding affinity with EG, releasing profile and mucoadhesive property. These derivatives could be considered as promising carriers for mucosal delivery system.


Assuntos
Quitosana/química , Ciclodextrinas/química , Eugenol/química , Linhagem Celular/efeitos dos fármacos , Quitosana/síntese química , Quitosana/farmacologia , Ciclodextrinas/síntese química , Ciclodextrinas/farmacologia , Sistemas de Liberação de Medicamentos , Eugenol/síntese química , Humanos , Ligação de Hidrogênio , Micelas , Mucosa Bucal/citologia , Mucosa Bucal/efeitos dos fármacos , Mucinas/química , Tamanho da Partícula , Água/química
14.
Anal Biochem ; 429(2): 142-7, 2012 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-22809874

RESUMO

The use of microarray-based immunoassay is often limited by its sensitivity. To increase the sensitivities of such an immunoassay, liposome encapsulation was explored. Two different liposome formations and several preparation methods were examined to optimize encapsulation and signal-enhancing efficacy for enzyme-linked immunosorbent assay (ELISA) and antibody array. The signal amplification by liposome encapsulation was demonstrated through a detection for foodborne pathogenic Listeria. In plate-trapped antigen (PTA) ELISA, horseradish peroxidase (HRP)-loaded liposome increased signal 9-fold more than the control. Limits of detection (LODs) of HRP-encapsulated liposome were 6.4 × 10(5) and 5.5 × 10(6)CFU/ml in sandwich ELISA and antibody array, respectively. Furthermore, when chromogenic 4-chloro-1-naphthol (4-CN) substrate was used for signal development in the antibody array, the signal could be detected with the naked eye. These results suggest that the liposome encapsulation technique can have great potential for signal amplification and, therefore, for increasing assay sensitivity for various formats of immunoassay, especially microarray-based format.


Assuntos
Imunoensaio , Lipossomos/química , Anticorpos/química , Anticorpos/imunologia , Antígenos/análise , Química Farmacêutica , Colorimetria , Peroxidase do Rábano Silvestre/química , Peroxidase do Rábano Silvestre/metabolismo , Listeria/metabolismo , Nanotecnologia , Naftóis/química , Análise Serial de Proteínas
15.
Carbohydr Polym ; 89(2): 623-31, 2012 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-24750767

RESUMO

Inclusion complex between water-soluble ßCD-grafted chitosan derivatives (QCD-g-CS) and eugenol (EG) was investigated as a new type of mucoadhesive drug carrier. The QCD-g-CSs were synthesized with various ßCD moieties ranging from 5 to 23%. Spontaneous inclusion complex of these derivatives and EG were found and confirmed by FTIR and simulation study. Self-aggregated formations of QCD-g-CS were found, according to fluorescence and TEM studies, where the formations were preferable for QCD11g-CS and QCD5-g-CS. EG can be included in both ßCD hydrophobic cavity and hydrophobic core of QCD-g-CS self-aggregates, resulting in varying entrapment efficiencies. Degree of QCD substitution on QCD-g-CS plays an important role on their physical properties, due to steric hindrance. The QCD11-g-CS showed excellent mucoadhesion, compared to the QCD5-g-CS and QCD23-g-CS. Moreover, the inclusion complex between QCD-g-CS and EG tend to express higher antimicrobial activities against Candida albicans, Streptococcus oralis and Streptococcus mutans, than the native QCD-g-CS.


Assuntos
Anti-Infecciosos/química , Quitosana/química , Portadores de Fármacos/química , Compostos de Epóxi/química , Eugenol/química , Compostos de Amônio Quaternário/química , beta-Ciclodextrinas/química , Adesividade , Anti-Infecciosos/administração & dosagem , Candida albicans/efeitos dos fármacos , Candida albicans/crescimento & desenvolvimento , Portadores de Fármacos/administração & dosagem , Eugenol/administração & dosagem , Mucinas/química , Solubilidade , Streptococcus mutans/efeitos dos fármacos , Streptococcus mutans/crescimento & desenvolvimento , Streptococcus oralis/efeitos dos fármacos , Streptococcus oralis/crescimento & desenvolvimento , Água/química
16.
Int J Biol Macromol ; 48(4): 589-95, 2011 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-21300088

RESUMO

Water-soluble ß-cyclodextrin grafted with chitosan (CD-g-CS) was carried out by quaternizing the CD-g-CS with glycidyltrimethyl ammonium chloride (GTMAC) under mild acidic condition, corresponding to the quaternized CD-g-CS (QCD-g-CS). The degrees of substitution (DS) and quaternization (DQ), ranging from 5% to 23% and 66% to 80%, respectively, were determined by (1)H NMR spectroscopy. Self-aggregates formation of all QCD-g-CSs were investigated in water using dynamic light scattering (DLS), atomic force microscopy (AFM), and transmission electron microscopy (TEM) techniques. The result revealed that all QCD-g-CSs are able to form self-aggregates in water. Large particle sizes ranged from 800 to 3000nm were obtained by DLS while zeta-potentials were ranging from 25 to 40mV. AFM and TEM depicted a spherical shape with particle sizes ranging from 100 to 900nm. Mucoadhesive and cytotoxic properties of all QCD-g-CSs were evaluated using a mucin particle method and MTT assay compared to quaternized chitosan (QCS). It was found that the mucoadhesive property increased with decreasing DS due to less quaternary ammonium moiety into the chitosan backbone. On the other hand, the cytotoxicity increased with increasing DS even though the DQ is decreased.


Assuntos
Quitosana/química , Mucinas/química , beta-Ciclodextrinas/química , Adesividade , Compostos de Epóxi , Espectroscopia de Ressonância Magnética , Microscopia de Força Atômica , Microscopia Eletrônica de Transmissão , Tamanho da Partícula , Compostos de Amônio Quaternário , Espectroscopia de Infravermelho com Transformada de Fourier , Água/química
17.
AAPS PharmSciTech ; 10(4): 1234-42, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19862624

RESUMO

The nanoemulsions composed of citronella oil, hairy basil oil, and vetiver oil with mean droplet sizes ranging from 150 to 220 nm were prepared and investigated both in vitro and in vivo. Larger emulsion droplets (195-220 nm) shifted toward a smaller size (150-160 nm) after high-pressure homogenization and resulted in higher release rate. We proposed that thin films obtained from the nanoemulsions with smaller droplet size would have higher integrity, thus increasing the vaporization of essential oils and subsequently prolonging the mosquito repellant activity. The release rates were fitted with Avrami's equations and n values were in the same range of 0.6 to 1.0, implying that the release of encapsulated limonene was controlled by the diffusion mechanism from the emulsion droplet. By using high-pressure homogenization together with optimum concentrations of 5% (w/w) hairy basil oil, 5% (w/w) vetiver oil (5%), and 10% (w/w) citronella oil could improve physical stability and prolong mosquito protection time to 4.7 h due to the combination of these three essential oils as well as small droplet size of nanoemulsion.


Assuntos
Repelentes de Insetos/administração & dosagem , Nanopartículas , Óleos Voláteis/administração & dosagem , Aedes , Animais , Sobrevivência Celular/efeitos dos fármacos , Vetiveria , Estabilidade de Medicamentos , Emulsões , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Ocimum , Óleos Voláteis/química , Óleos Voláteis/farmacologia , Tamanho da Partícula , Óleos de Plantas/administração & dosagem , Óleos de Plantas/química , Óleos de Plantas/farmacologia , Solubilidade
18.
Int J Pharm ; 372(1-2): 105-11, 2009 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-19162149

RESUMO

Encapsulated citronella oil nanoemulsion prepared by high pressure homogenization at varying amounts of surfactant and glycerol, was studied in terms of the droplet size, stability, release characteristics and in vivo mosquito protection. Transparent nanoemulsion can be obtained at optimal concentration of 2.5% surfactant and 100% glycerol. Physical appearance and the stability of the emulsion were greatly improved through an addition of glycerol, owing to its co-solvent and highly viscous property. The increasing emulsion droplet increased the oil retention. The release behavior could be attributed to the effect of droplet size and concentrations of surfactant and glycerol. By fitting to Higuchi's equation, an increase in glycerol and surfactant concentrations resulted in slow release of the oil. The release rate related well to the protection time where a decrease in release rate can prolong mosquito protection time.


Assuntos
Culicidae/efeitos dos fármacos , Repelentes de Insetos/administração & dosagem , Nanopartículas/administração & dosagem , Óleos de Plantas/administração & dosagem , Animais , Culicidae/metabolismo , Emulsões , Humanos , Repelentes de Insetos/química , Repelentes de Insetos/farmacocinética , Nanopartículas/química , Tamanho da Partícula , Extratos Vegetais/administração & dosagem , Extratos Vegetais/química , Extratos Vegetais/farmacocinética , Óleos de Plantas/química , Óleos de Plantas/farmacocinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...